Antarctic Environments Portal

Sources, dispersal and impacts of wastewater in Antarctica

clarity of discharge effluent at McMurdo

Information Summary

Version: 1

Published: 30/09/2016 GMT

Reviewed: 30/09/2016 GMT


Jonathan S Stark (1), Kathleen E. Conlan (2), Kevin A. Hughes (3), Stacy Kim (4), César C. Martins (5)

(1) Australian Antarctic Division, Channel Hwy, Kingston 7050, Tasmania, Australia
(2) Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada K1P 6P4
(3) British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
(4) Moss Landing Marine Labs, Moss Landing, CA 95039, USA
(5) Centro de Estudos do Mar, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil

DOI: 10.18124/D4H59S


The discharge of sewage and wastewater into the Antarctic environment represents a serious and significant risk of environmental impacts. Impacts include the introduction of non-native micro-organisms and pathogens, genetic pollution and contaminants that could lead to long term impacts on wildlife health, biodiversity and community structure in the vicinity of Antarctic Stations. Treatment and disposal practices vary widely from station to station. Each Party determines their own standards with varying interpretation of requirements under the Protocol on Environmental Protection. Further research and monitoring of the impacts of wastewater on Antarctic ecosystems will assist in quantifying the potential risks and impacts. Currently, guidelines describing permissible levels of bacteria, chemical and other contaminants being discharged from outfalls within the Treaty area do not exist and their development could be beneficial in setting a baseline for monitoring. One of the highest priorities of the Committee for Environmental Protection (CEP) is addressing the introduction of non-native species. Wastewater discharge is a significant source of potential introductions, but advanced wastewater treatment could substantially reduce the associated risk. 


The Protocol on Environmental Protection to the Antarctic Treaty permits the discharge of sewage and wastewater (hereafter referred to as wastewater) from Antarctic stations into the sea or into deep ice pits in non-coastal areas, when its removal from the region is not practically achievable. Wastewater has also been previously disposed of in inland areas, including burial in snow, discharged into inland streams and lakes and even discharged to ice-free land [1,2], none of which now meet the requirements of the Protocol. In accordance with the Protocol, discharge into the sea must take into account the “assimilative capacity of the receiving marine environment”, and must be located, wherever practicable, where conditions exist for “initial dilution and rapid dispersal”, but these terms are not currently defined. The minimum level of treatment required is maceration, but only where station summer populations exceed c. 30. In practice a wide range of treatment technologies are used [1,3,4], ranging from no treatment (e.g. at many smaller or seasonal stations) to advanced tertiary systems.

McMurdo wastewaterbldg

Figure 1. The McMurdo wastewater treatment plant is a substantial facility to serve a population that can exceed 1000 people and carries a higher than average solids load which requires substantial macerators on line.


Wastewater inputs on Antarctic stations range from domestic (kitchens, showers, toilets) to light industrial (laboratories and mechanical workshops) although this is not in line with Annex III of the Madrid Protocol, and have some similarities to standard municipal wastewater with, for example, high microbiological loads [5]. However, several properties can differ: wastewater may be more concentrated (as there is no stormwater or runoff inputs and water use is generally restricted) while nutrients, Biological Oxygen Demand (BOD) and settleable solid levels may be higher [5] and environmental degradation rates lower [3]. Wastewater quantity may also be highly variable due to seasonal cycles in station populations; however, volumes are generally small in comparison to domestic outfalls, ranging from several hundred to tens of thousands of litres per day, with notably higher volumes at larger stations (e.g. McMurdo Station[6]). The large variability in wastewater parameters may cause technical difficulties for those operating treatment plants year-round.  Contaminants detected in wastewater include metals, persistent organic compounds (POPs), (such as polybrominated diphenyl ethers (PBDEs) [7,8]), surfactants, hydrocarbons and endocrine disrupting compounds [3].

clarity of discharge effluent at McMurdo SMALL

Figure 2. Clarity of the water discharged from the McMurdo wastewater treatment plant.


Many Antarctic wastewater studies have focused on measuring its distribution and extent in the marine environment. These have been undertaken predominantly during the summer; however, during winter when coastal areas are covered by sea ice the dispersal conditions may be different [9]. Four categories of wastewater dispersal tracers have been identified: human-associated enteric bacteria e.g. Escherichia coli, Enterococci, Clostridum perfringens and total coliforms [3,9-11]; human biomarkers e.g. faecal sterols [12-14]; contaminants and sewage molecular markers e.g. hydrocarbons [11], linear alkylbenzenes [13], trace metals [11], polybrominated diphenyl ethers (PBDEs) [7,8,11]; and stable isotopes [6]. Wastewater tracers have been detected in seawater, marine sediments and biota, including fish and invertebrates [14], up to 2 km from stations. In general, wastewater discharged from Antarctic outfalls predominantly flows along the shore, with less evidence for dispersal out to sea [11,15]. Exceptions are for offshore disposal sites on ice shelves or permanent sea ice such as the airfields at McMurdo Station [16]. However, the measurement of tracers does not indicate whether any environmental impacts result from the discharge.

The Protocol states that precautions should be taken to prevent the introduction of non-native micro-organisms to Antarctica, although it does not specifically mention risks posed by wastewater. Wastewater discharge results in the release of large numbers of non-native micro-organisms, viruses and pathogens [3] to the environment that may remain viable for extended periods [2,17], and may also present a substantial threat to indigenous microbial and macrofaunal species [18]. Wastewater may also contain mobile genetic elements, such as those encoding for antibiotic resistance [19,20], which have been found established in local bacterial and animal populations [18,19] and have been termed “genetic pollution”. However, beyond establishing the presence of non-native microorganisms, there has been little research to determine their potential impacts. There are many records of disease associated pathogens (e.g. Salmonella) present in Antarctic wildlife including Adélie and macaroni penguins, skuas, fur seals, albatross and gulls [3], although evidence of an anthropogenic source or any subsequent disease outbreaks is lacking. However, human faecal bacteria have been found in Antarctic wildlife, (e.g. clams, fish, sea urchins and starfish) with a higher incidence closer to outfalls, indicating ingestion of wastewater, further confirmed by stable isotopes [6]. No disease symptoms have been reported [3] but an increased incidence of internal organ abnormalities were reported for fish [21].

Our understanding of the environmental impacts of wastewater discharged into Antarctic ecosystems is relatively limited. Marine benthic communities have been studied at McMurdo, Casey and Davis Stations as indicators of wastewater pollution. In general, impacts on the communities were correlated with scale of the wastewater discharge, with reduced species diversity and abundance and dominance by some opportunistic species [22,23]. Ecotoxicological studies of wastewater are rare but do indicate toxicity to Antarctic marine invertebrates at low concentrations, over exposures of several weeks [5]. Very little is known regarding the impacts of wastewater disposed in inland areas such as ice pits, freshwater lakes and streams or ice-free areas. Extremely low degradation rates and recent climate change may lead to exposure of historical wastes and long term pollution problems [2].

The effectiveness of wastewater treatment plants depends on the type and level of treatment. Traditional wastewater treatment removes nutrients (to prevent eutrophication) and reduces microorganism/pathogen concentrations. Antarctic marine waters are generally not nutrient limited  but significant risks to the environment may be caused by contaminants and microorganisms [5]. Most station treatment systems remove nutrients and lower BOD, thereby reflecting secondary treatment processes described in the Protocol, (i.e. Rotary Biological Contactors). However, the removal of sewage microorganisms becomes more effective when employing more sophisticated treatment processes, with advanced tertiary treatment almost eliminating micro-organism/pathogen release and removing all contaminants [3,5].

Ceramic membrane treatment Davis Station

Figure 3. This sectional view of the wastewater treatment plant for Davis Station indicates the complexity of the engineering needed for treatment.


Davis treatment plant

Figure 4. Inside the Davis Station treatment plant.


Currently, no specific guidelines for wastewater disposal or specific allowable levels of bacteria in discharges from outfalls have been agreed upon under the Protocol. However, technologies for wastewater treatment have improved markedly since the Protocol was signed (1991), and advanced tertiary treatment is now the best procedure to minimize the full range of potential risks from wastewater discharge. The release of untreated sewage, with the associated non-native microorganisms, genetic elements, chemical contaminants and nutrients, remains a cause for substantial concern. Monitoring of existing outfalls/disposal areas and further research on their potential impacts, particularly those related to harmful contaminants (such as POPs), microbiological impacts, genetic pollution and wildlife health may help to quantify the risk and their potential impacts, along with more sensitive analytical techniques to detect low levels of sewage input in the Antarctic environment. Sufficient “initial dilution and rapid dispersal” to prevent impacts may not be achievable in Antarctic nearshore marine environments, but advanced treatment methodologies may present possible solutions to mitigate the environmental risk.

Davis outfall with seaice SMALL

Figure 5. The Davis Station wastewater outfall when the sea ice is in.

Key Events

1975:  ATCM VIII.  Recommendation VIII-11.  Code of Conduct for Antarctic Activities.  Included the requirement for human waste (as well as garbage and laundry effluents) to be macerated and flushed into the sea, where possible.

1982:  ATCM XII.  Recommendation XII-4.  Waste Disposal Code of Conduct.  The Parties noted that improvements in logistics and technology increase the feasibility of on-site treatment of human and other waste, and recommended that their Governments seek advice of their Antarctic operating agencies on the desirability and feasibility of revising the Code of Conduct for Antarctic Activities, particularly with respect to the increased potential for on-site treatment.

1991:  SATCM XI-4.  The Protocol and its first four Annexes adopted.  Annex III provides for: 

  • Sewage to be removed from the Antarctic Treaty area to the maximum extent practicable.
  • No disposal of human waste [and other wastes] on to ice-free areas or into freshwater systems.
  • Sewage may affect the marine be discharged into the sea, taking into account the assimilative capacity of the receiving environment and provided that the discharge is rapidly diluted and dispersed.
  • Large quantities of sewage [from stations of 30 or more people] shall be trated at least by maceration.
  • The by-product of sewage treatment by the Rotary Biological Contacter process may be disposed to sea provided that it does not adversely affect the marine environment.

2002:  COMNAP Best Practice Guidelines to avoid waste water disposal at inland sites

2006:  Antarctic Environmental Officers workshop in Hobart on waste management

2014:  COMNAP Workshop in Christchurch on wastewater management